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4.-" 1
INTRODUCTION

This project was motivated by A.H. Klopf's [1) insightful obser-

vation and proposition on the functioning of the neuron cell and the

nervous system in general, and the work done by Professor A. Barto

and his associates at the University of Massachusetts in an effort

to design and computer-simulate networks and systems of networks

operating on the principles proposed by Klopf.

Klopf hypothesized that the neuron is an adaptive heterostat

element, operating in such a manner as to maximize the frequency of

S"occurrence of certain inputs deemed desirable and minimize the fre-

" quency of occurrence of those undesirable. It achieves this by

appropriately modifying its transfer characteristic so as to make it

easier to respond to desirable inputs. Thus, the neuron learns to

exert some control over its output through an input-output associa-

- tive process and adaptation so as to enhance those conditions that

result in desirable output.

Nature is a supreme teacher and observing how it works has al-

ways yielded new design ideas. We believe that it would be desirable

to build controllers for physical systems that could operate in this

manner. Such controllers would learn to develop a control law with-

,. . out requiring to know the dynamics of the controlled system.

Barto and his associates [2] investigated the feasibility of us-

ing goal seeking elements operating in the mode theorized by Klopf

as components of intelligent machines. Computer simulation models

were developed for goal seeking elements, and it was demonstrated
that goal seeking nets could be built out of goal seeking components.

Barto's work is an excellent study on adaptation and learning

problems and learning rules, with special emphasis given to Klopf's

heterostat. In a system operating in accordance with this reinforce-

ment learning rule, the weighting function at the i-th input,

. ,
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Wi (t), is enhanced if excitation of the i-th input at t leads to

excitation at the i-th input r seconds later, the enhancing function

e(r') decaying exponentially with -. Thus z is a cause-effect

measure, a small z indicating a strong "link" between the i-th input

and the output it produces.

.Of the several goal-seeking systems of goal-seeking components
developed and studied by Barto, those described as "learning with a

critic" were judged to be potentially more applicable to our engi-

neering world.

Systems described as "learning with a teacher" require that the

controller "knows the answers to a set of questions", i.e., knows

what the response to a set of inputs should be and provides the sys-

tem with appropriate corrective signals. In most engineering sys-

tems, this operation requires more information than is usually

available. Learning with a critic, on the other hand, requires only

that an observation be made as to whether the output is changing in

the right direction. One could reasonably expect that such infor-

a. mation should be available in many engineering applications.

.' The most promising learning network Barto developed that demon-

strates problem solving/control capability is the ASE-ACE learning

loop [3].

In this system, two elements are used to implement a learning

strategy as follows. One element, termed the Associative Search

Element (ASE) constructs associations between the input and output

by searching under the influence of reinforcement feedback. A second

element, the Adaptive Critic Element (ACE) constructs a more infor-

mative evaluation function than reinforcement feedback can provide,

thus improving the performance of the ASE when operating alone.

Both of these neuron-like adaptive elements, which constitute the

controller of the learning network, were suggested by the work of

Klopf.

2
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The example chosen by Barto on which to implement the ASE-ACE

learning net was the adaptive learning problem known as "BOXES",

developed by Michie and Chambers. BOXES requires that the system

learn to balance a pole which is pivoted on top of a cart, by apply-

ing a force *F on the cart, which is free to move along a straight

line path. The reason for choosing BOXES was that it provided a good

learning control problem with a solution available, hence the im-

proved performance resulting from the use of ASE-ACE learning net

could be concreteiy demonstrated.

The specified goal of this project was:

1. Develop an understanding of Klopf's work related to neuron-

like adaptive system behavior.

2. Understand Barto's work on realization/simulation of neuron-

like adaptive learning networks.

3. Investigate possible implementation of these nets in physical

systems, specifically in synthetic aperture radars.

This report documents the progress made toward that goal.

Section 2 of this report discusses the pole-on-cart control pro-

blem, which is used for testing the learning algorithms, modified

slightly to conform better to engineering concepts. It also de-

scribes the implementation of the ASE-ACE controller at ERIM and the

studies on ASE-ACE performance.

Section 4 investigates the use of ASE-ACE in minimizing arbitrary

functions and Section 5 indicates how the ASE-ACE controller could

be applied in the SAR autofocus problem.

Finally, Section 7 describes the possible application of a learn-

ing net, like the ASE-ACE, to a robotics problem.

3



t 2
IMPLEMENTATION OF THE ASE-ACE NET

2.1 THE POLE-ON-CART CONTROL SYSTEM

Since the pole-on-cart system is used to test the learning al-

gorithms developed, it is useful to have the system and control

approach suggested by Michie and Chambers described in some detail.

Consider a system consisting of a cart with a pole pivoted on

top of it. The cart is constrained to move along a straight line

path, say the x-axis, on the x-y plane. The pole is so pivoted that

it can move on a plane perpendicular to the x-y plane, through the

,, x-axis. Let the allowable linear motion of the cart be the interval

(-X, X) while the pole's allowable angular displacement is (-s, 9)

(see Figure 2.1).

A motor in the cart can move it along the x-axis by applying a

* constant force F in either direction. The control goal is to keep

the pole inside the allowable e limits while the cart stays within

the x-bounds. To do this, sensors measure the cart's linear position

and velocity and the pole's angular position and velocity at discrete

intervals t = nT and a force F or -F is then applied at these inter-

vals. This could be the result of a +V or -V voltage applied to the

motor. If the system reaches the extreme positions *X or *9, the

experiment ends. The magnitude of X, 9, and F are not important here

and could be so chosen as to correspond to appropriate values.

The state of the system at t = nT is described by the vector

s_(nT) = (x, , e ;), where each state-variable is evaluated at t =

nT. Since S is measured at discrete intervals, it is convenient to

discetize the state space by arbitrarily allowing a finite number of

levels in each state variable. If NJ, N2, N3, N4  are the

allowed levels in the variables x, v, e, and w, respectively, the

state space will have exactly (NIN 2N3N4) possible states.

'' IPREVIOUS PAGE
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There are two basic assumptions that have to be kept in mind when

designing a controller for this system. First, knowledge of system

dynamics, i.e., mathematical model or transfer function for the sys-

tem is not available. Second, a learning system improves its per-

formance through evaluation of its experience. Thus, learning re-

quires long-term memory to allow comparisons of results of actions

taken in the past in response to existing conditions. On the basis

of this comparison appropriate actions are taken. For such a learn-

ing system, then, the controller is the learning network.

In the "BOXES" example, a controller for this system was designed

as follows. We choose a controller with at least as many memory

cells (boxes) as the number of system states. Each cell is addressed

by a state and in it we store the action to be taken by the system,

*F, when the sensed system state corresponds to the cell's address.

Initially, the system does not know what is the correct instruc-

tion to give. So the system is initialized by storing values *F at

random in the cells. When control action starts, the system sensor

read the state of the system at regular intervals t = nT. The system

then goes to the memory cell addressed by that state and reads what

action is to be taken. At that instant, a clock in the cell starts

counting. This process continues until the system fails, i.e., a

state variable exceeds the extreme values *X or *e and control action

stops. The clock readings in each cell are the time until failure

(TUF) from the moment the cell was entered. This TUF is now stored

in the cell and the instructions in all entered memory cells during

the first control action are reversed, +F to -F and vise versa.

The process is repeated but now at the end of the second control

action there are two TUF readings for those cells that were entered

the second time. We leave in the cell as control instruction which-

'. ever instruction leads to longer TUF, together with the value of that

TUF.

7



This control strategy leads to memory settings that favor maxi-

mum TUF for the system and after several control actions the system

"learns" what to do to stay inside the prescribed bounds.

A system operating with this control law has been computer-

simulated by Barto and shown to work well [3]. After about 100 con-

trol actions the system can take on the average 4,000 steps before

failure occurs.

The described control strategy is not optimal. The system is

not learning fast. Actually, since learning takes place when the

system fails, the learning process slows down as the system learns.

Barto corrected this through the introduction of the ASE-ACE

adaptive-learning network.

2.2 THE ASE-ACE ADAPTIVE CONTROLLER

Figure 2.2 shows a system with transfer function G controlled by

the ASE-ACE learning net. The state vector s of the system is sam-

pled at intervals T sec. and is fed into a decoder which is used to

discretize the state space of s into a finite number of states and

convert s into a binary vector X, whose components are all zero ex-

cept the one corresponding to the state of the system at the sampl-

ing instant t = nT. The dimension of X is equal to the number chosen
*.. for the discrete states of the space of s.

The vector X is fed into the ASE-ACE. At the Adaptive Critic

Element, its adaptive weighting vector v, the input vector X and the

external reinforcement function r(t), are used to generate the in-

ternal reinforcement function l(t) that inputs the ASE, in accordance.p..

with the rule:

-(t) = r(t) + yp(t) - p(t - 1)

•. - . . . . . . . . . . .....o- V \.-
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where

* p(t) - vixi

y is a non-negative constant less than or equal to one, and the

weighting vector v updates in accordance with

vi (t + 1) = vi (t) + 6r(t)x i (t)o1

k. where i(t) is the value of a trace of the input variable xi at t,

evaluated from:

xi(t + 1) = Bxi (t) + (I - B)xi (t)

and B and 6 are positive constants.

At the Associative Search Element, the input vector X generates

-"4.. the output y:

y(t) = *1

depending on whether [Zwix i + n(t)] is nonnegative or negative,

respectively, n(t) is additive system noise and the weighting vector

w updates in accordance with the rule:

wi(t + 1)= wi(t) + a'r(t)ei(t)

The function ei(t) is the eligibility at t of path i, adapting in
accordance with the rule:

ei(t + 1) = oei(t) + (1 - 3)[y(t)xi(t)]

and > 0; 0 < B < 1. Figures 2.3 and 2.4 show in block diagram form

the implementation nf the ASE-ACE algorithms at ERIM.

The way ASE-ACE exercise control over a given system G is as

follows. Let us assume that we wish to maintain the values of the

state variables s. and sk of the system within certain bounds.

10
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We use the external reinforecement variable r(t) to penalize the

system when either si or sk take values outside the desired

range. When this happens, we will say that the system has failed

and r(t) is set equal to -1. Otherwise, r(t) = 0.

With zero initial values for the system state variables and the

--. , ASE-ACE variables w, v, e, x, the system is activated and goes

through a sequence of admissible states, until it finally fails,

either in sj or sk.  At that time, the system state variables
* A*

and x are reset to zero, but w and v are left untouched. Thus, when

the next trial for the system starts, the initial values of w and v

are the final values from the previous trial. Hence, the experience,

or learning, of the system at time t is stored in the valueswi(t)

and vi(t). After a few trials, the system learns how to operate-I

without failure, i.e., learns how to operate while maintaining the

state variables within the desired bounds.

The previously described ASE-ACE system was independently simu-

lated at ERIM, though the University of Massachusetts program was

given to us.

When running the ERIM pole-on-cart simulation, a different set

of pole-cart parameters than those used by the University of

Massachusetts was selected. This was because an error was found in

the University of Massachusetts computer program, which when cor-

rected made it impossible for the ASE-ACE to learn, since the pole

hit the boundaries in one sampling interval. This problem was cor-

rected by using a pole length of 10 meters instead of 0.25 meters.

All other parameters were the same as used by the University of

" Massachusetts. The problem could also have been corrected by using

a smaller sampling interval so the pole moved less between samples,

but the former approach was considered preferable, since it allowed

greater flexibility in the choice of sampling period.

K
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Our results substantiate that Barto's ASE-ACE controller after a

few trials can indeed learn to keep the pole balanced. Figure 2.5

shows a typical system learning curve. It is a plot of "no. of steps

to failure for trial k" versus "trial number." If the system learns,

the curve should have a positive slope, the slope being a measure of

the rate of learning of the system. In this example, the run was

terminated during the 28th trial, after the system exceeded ten

thousand steps without failure. When this happens, the computer is

instructed to cut off. The system has learned. Several runs were

made with different initial seed values in the noise generator pro-

gram, but with the same noise standard deviation. The resulting

curves were very similar, demonstrating a consistent system behavior.

The average of these runs is plotted in Figure 2.6.

It is useful at this time to examine briefly the concept of

learning. Specifically, how should one measure the performance of a

learning system? Figure 2.7 shows the learning curves of two hypo-

thetical systems. System no. 2 is initially learning faster than

* .system no. 1, but after several trials, no. 1 performs better.

Had we decided to declare that a system has "learned" when it

exceeded S steps without failure, it would appear that system no. 2

is preferable to no. 1, because it reached and exceeded S steps in

fewer trials. Yet, assuming that the sampling period is the same

for both systems, it took longer for system no. 2 to reach that level

of learning, because each trial it went through lasted longer. The

time to learn for each system is proportional to the area under its

learning curve and is equal to:

N-1

TL = 7 SFj TS
j=l

where SFj = the number of steps to failure for trial j,

14
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i Ts = the sampling period, and

N . the trial number at which the system exceeded S steps
":i without fail1ure.

What makes a system better, then, depends on the appi Ication.

It appears, however, that the time-to-learn concept is a more mean-

ingful measure of learning performance.

2.3 PERFORMANCE STUDIES

Understanding how the ASE-ACE controller adapts and learns is

vital, if we are to apply it successfully. The following studies

therefore were carried out:

a. Observation of the ASE-ACE system variables throughout the

learning process.

b. Effect of sampling period on system performance.

c. Effect of noise level on performance.

d. Effect of a, B, y, a parameter values on performance; optimal

values.

e. Effect of state-space structure on performance.

2.3.1 ASE-ACE SYSTEM VARIABLES BEHAVIOR DURING LEARNING

Close observation of the variation of the system variables, w,

v, e, x and the input vector X through a learning cycle is most

instructive.

After several runs were made, it was observed that system states

no. 4 and 10 were the most frequented states. The system "walked

through" several states, but was coming back to no. 4 and no. 10

regularly. The system does not need to go through all states to

learn. With every new trial, it visits a few new states, but most

of the time goes through states that were visited previously. By

18
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the time the system took 10,000 steps it had gone through seventy-

eight different states, out of 162 total.

Plots were made of the input vector X(t) and variables w(t),

e(t), v(t), ^X(t) for states no. 4 and no. 10 throughout ten consecu-

tive trials, for a total of 299 steps (see Figures 2.8 to 2.17).

The effect of punishment at each failure on wi and vi is clearly

evident, as is the effect of the eligibility function ei on wi

and of the trace xi function on vi. Phase plots, i.e., x vs. x

and ; vs. e were also plotted for several trials (Figures 2.18,

2.19). These plots illustrate the systeii behavior during the trial.

It is seen that when the sytem has learned, it goes through a cycle

of states over and over again, as should be expected.

2.3.2 EFFECT OF SAMPLING PERIOD

The sampling period was certainly expected to have a significant

effect on the system's learning behavior for two reasons. First,

there must be a minimum sampling rate, which is dictated by the sys-

tem bandwidth. Second, the nature of the learning system is such

that at each sampling instant, a decision is made as to whether a

force +F or -F should be applied, and also the system variables are

updated. Thus, shorter sampling period implies tighter control and

possibly improved learning.

Runs were made with sampling periods, TS, of 0.025 sec., 0.05
sec., 0.075 sec., 0.1 sec., 0.15 sec. and 0.2 sec. and the system

was allowed to go through fifty trials or 10,000 steps. The results

are shown in Figures 2.20 to 2.25. The system learning behavior was

approximately the same for TS = 0.025 sec. and TS = 0.05 sec.,

in both cases the system exceeding 10,000 steps by trial no. 30.

The learning rate decreased as TS increased, the system finally

failing to learn when TS = 0.2 sec. With TS  0.15 sec., the

system showed signs of slow learning by the end of the fiftieth
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trial. Longer runs were made and it was verified that indeed the

system is slowly learning (Figure 2.24). The results are summarized

in Figure 2.26, where the maximum number of steps in fifty trials is

plotted against the sampling period.

2.3.3 EFFECT OF NOISE LEVEL

Additive noise is introduced in the system at the ASE and affects

the output, y, wh~en the path weighting values are small. This is

certainly true the first time a path is entered. Later, as the

eligibility function gets into the picture wi's assume larger

values and the effect of noise diminishes.

Several runs were made with noise standard deviation values of a

= 0.01, a = 0.1, and a = 1.0. Figures 2.27, 2.28, and 2.29 show

these results, respectively, and it is seen that significant increase

in the noise level does inhibit the learning process, though the

learning curve for a = I has a positive slope.

Noise has been considered by Barto, as possibly beneficial to

the learning process of the system, because it gets the system to
more states quicker, and it was speculated that the sooner a system

visits several states the faster it will establish the proper path

values. On the other hand, however, once a system has learned it

should operate by going continuously through a small number of states

in a cyclic fashion. If the weighting path values are small, noise

may tend to bounce the system out of the cycle, hence make it less

stable and slower in learning.

2.3.4 EFFECT OF a, B, y, a PARAMETER VALUES

Use of a, B, y, a parameter values chosen by Barto, et al., in

their runs were based on logical arguments as to what kind of be-

havior seemed desirable for the eligibility function, e, trace

function, x, and internal reinforcement function, r. It was felt,

20
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however, that these values had to be tested and verified experi-

mentally. Accordingly, system performance was evaluated over a range

of y, , y, a values to determine those values yielding optimal per-

formance, i.e., time to learn.

Several runs were made over a wide range of values for each

parameter for two different sampling periods, TS = 0.025 sec. and

.TS = 0.1 sec. The results are shown in Figures 2.30 to 2.33.

These graphs clearly show that the values selected by Barto gave

optimal performance when TS = 0.025 sec. For TS = 0.1 sec.,

however, best performance was obtained for = 1,000, B = 0.85, y =

0.85, and 6 = 0.15.

2.3.5 EFFECT OF STATE SPACE STRUCTURE

An important question that must be answered is the effect of

system state space structure on the learning behavior of the system.

Barto has divided in the pole-on-cart example the state space into

162 "boxes", as was done originally by Michie and Chambers. This

division is arbitrary and was suggested by the need to keep the num-

ber of states small, hence the computation time short.

If it were true that a system in order to learn needs to visit a

large number of states, then the greater the number of states into

which the space is divided the longer it would take for the system

to learn. Furthermore, the finer the division the grid is cut into,

the finer the control exercised can be. At the same time when the

grid gets too fine the system may go through several states between

steps, thus without initializing them. This would negate any pos-

sible advantages a finer grid could provide. Thus there can be a

relationship between sampling period and grid size, if advantage of

a fine grid is to be made.

Testing of the effects of grid size have not been completed, but

preliminary results seem to substantiate the relationship between

grid size and sampling period.
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3
ASE-ACE COMPARED TO THE TIME OPTIMAL CONTROL LAW

During this study, it was observed that there is a similarity

between the ASE-ACE as a controller and the time optimal control law

for a double integral plant. Figure 3.1 illustrates the time optimal

control problem for a simple double integral plant. Two integrators

in series are driven by a control, u(t), and the objective of the

control strategy is to drive the outputs of both integrators to zero

in the least amount of time.

4 In Reference 4, it is shown that the time optimal control law

for the double integral plant is the bang-bang controller where the

input always assumes the value of either +1 or -1. Figure 3.1 is a

plot of the state space for the double integral plant with the opti-

mal switching curve drawn in as a solid line. The optimal switching

curve is the set of all points (Sl' s2) which satisfy the re-

lationship sl = - 1/2 Is21s 2.  The control u takes the value

of +l whenever a point in the state space falls below the switching

curve or falls on the portion of the switching curve in the lower

right quadrant. The control u takes the value -l whenever a point

in the state space falls above the switching curve or falls on the

portion of the switching curve in the upper left quadrant. For any

initial conditions, the two integrator outputs are driven to zero

after the control has sequenced either from +1 to -l or -l to +1.

Ideally, after the double integral plant has been driven to zero,

it will stay there until the next set of initial conditions. In

practice this will never happen. If there is any noise in the

measurements of sI and s2 or any time delay in switching, the

control system will go into a limit cycle about the origin. The size

of the limit cycle will depend on the amount of noise or the amount

of time delay in switching that exists. The time optimal controller

does keep the output of the double integral plant bounded with time.
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The pole-on-cart system can be viewed as two double integral

plants which are coupled and driven by a common input. The pole

hinged on the cart is one double integral plant where the output of

the first integrator is the angular velocity of the pole and the out-

put of the second integrator is the angular position of the pole.

The cart on the track forms the second double integral plant where

the velocity of the cart on the track is the output of the first

integrator and the position of the cart on the track is the output

of the second integrator. Both double integrator plants are driven

by the force applied to the cart.

The ASE-ACE uses a control force to drive the pole-on-cart system

which takes only the values of +1 or -1. Therefore, the ASE-ACE is

driving two double integral plants with a bang-bang control. The

ASE-ACE is performing the function of the optimal control law shown

in Figure 3.1 for the single double integral plant. It must learn

for every region in the state space the proper direction to drive

the system. The ASE-ACE must, however, do this for a four dimen-

sional system.

Consider the optimal control law shown in Figure 3.1. Note that

there are closed and open sets of points for which the control action

is the same. Therefore, the state space could be divided up into a

set of regions referred to as boxes sometimes before, where all the

points in any box are associated with the same control action. Also

the problem could be restricted to some subspace of the state space

such that any point outside this region can never be an initial con-

dition and if the control law drives the system to this point, the

controller can be assumed to have failed to properly control the

system.

eo Consider now what would happen if instead of allowing the con-

troller to continuously observe the state of the double integral

plant, the controller could only sample the state of the system
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periodically. This can be viewed as introducing time delay into the

: : system, which it is known will cause the controller to go into a

limit cycle about the origin. The size of the limit cycle will de-

pend on how often the controller observes the state of the srtem.

If the controller observes the state of the system too infrequertly,

the state of the system could exit the allowed region causing a

failure.

Comparing the pole-on-cart system controlled by the ASE-ACE to

the double integral plant time optimal control problem, it would be

expectd that the ASE-ACE can control the system if it learns a con-

trol law similar to the one shown in Figure 3.1 and the final state

of the system should limit-cycle about the origin. This assumes the

- existence of a four-dimensional switching curve for the four-

* 'dimensional pole-on-cart problem.

A final point of comparison between the time optimal control law

and the ASE-ACE controller is that the ASE-ACE uses boxes of non-

uniform size. Figure 3.2 shows one method of defining regions of

the double integral state space where the control action is the same

for every point in the region. Figure 3.2 shows a set of switching

-_,2 curves (solid lines) passing through different points on the velocity

axis and trajectories starting at the points Xmax and Xmin (dot-

ted lines) for control actions +1 or -1. The regions formed by the

'.". intersections of the switching curves, trajectories and x-y axes con-

tain open sets of points which have a common control action. These

regions have different sizes and are not rectangular boxes. Forming

these regions requires knowledge about the propagation of the system

for any control action and the optimal control law. In the absence

of such information, it is reasonable to divide the state space up

into rectangular regions and regions of unequal size. Note that in

using rectangular regions, any given trajectory may exit the subspace

defined by the rectangular regions and then re-enter at a later time.

This event may not be marked as a failure if the trajectory exits
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the subspace because of velocity and not position. Situations can

arise where the state of the system is not in any of the defined
regions (boxes) but failure has not occurred. This cannot happen

with the regions defined in Figure 3.2.

Figure 3.3 shows how the ASE-ACE can be applied to the double

integral plant and Figure 3.4 is a plot of the state space of the

double integral plant after the ASE-ACE has learned. The state space

plot shows a limit cycle as previously predicted would happen. In

the limit cycle, the ASE-ACE only passes through four states so only

the weights for those four states must be learned.

It has been shown that the ASE-ACE as a controller for the.pole-

on-cart system is similar to the bang-bang controller for the double

integral plant. The ASE-ACE can be thought of as learning the

- switching curve for a four-dimensional bang-bang controller. The

stability and performance of the ASE-ACE is expected to be very

similar to the stability and performance of the bang-bang controller.
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4
MINIMIZING A FUNCTION USING ASE-ACE

Careful study of the ASE-ACE learning controller has led us to
believe that there are potential applications of this system to
several problems related to synthetic aperture radar. Examples of
such problems are:

1. Higher order focus (autofocus)

2. Radar system design optimization

3. SAR moti-r1 compensation
4. Target detection and recognition
5. Phase reconstruction algorithm

6. Evaluation and analyzing of multiple error sources

7. Image matching.

... .~ A commlon characteristic of most of these problems is that they
c an be studied from the perspective of minimizing some performance
function. To apply the ASE-ACE to these problems, therefore, the
general problem of minimizing a function must be put into the struc-

ture that the ASE-ACE was designed to handle.

4.1 FIRST APPROACH TO MINIMIZING A FUNCTION

Two approaches to minimizing a function using the ASE-ACE have

been studied. Figure 4.1 illustrates the first approach that was
used to minimize a function, and shows a feedback system which is
stable only when the function F(XI) is identically zero. The

variable XI represents the present estimate of the value of X that

minimizes the function F(%X). Each iteration of the control system,
the value of XIis changed by the value of A1~l F(X,) where

A is a positive real number. Unless F(XI) equals zero at

some point, X I will eventually grow without bound.
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FIGURE 4.1. FIRST APPROACH TO MINIMIZING A FUNCTION.
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The control path in the lower lefthand side of Figure 4.1 shows
how AI is computed. Using two consecutive values of F(XI ) and

X, an estimate is generated for the rate of change of F(X) with
respect to X, DF/DX. If OF/DX is positive, AI is incremented by a

constant positive real number &A. This is a form of penalty. Un-
less F(XI) is decreasing, A, will grow unbounded and force XI

to grow even faster with time. Initially, AI is set equal to AA.

The ASE-ACE algorithms noted in the lower righthand corner of

Figure 4.1 use a two dimensional state space consisting of AI and

XI . The output of the ASE-ACE algorithms has a value of 1 and can
be positive or negative. The ASE-ACE controls whether XI is in-

creased or decreased from its present value. In order for the
ASE-ACE to keep XI within bounds, it must drive F(XI) as close

to zero and as quickly as possible. If XI or AI exceed the

selected limits for the problem, the ASE-ACE has failed and it is
punished.

The control problem illustrated in Figure 4.1 is very similar to

the pole-on-cart problem. Both problems involve a basically unstable

system with at most one stable equilibrium point. Both problems also

involve two basic control variables. The variable XI can be com-

pared to the angle of the pole and the variable AI can be compared

to the position of the cart on the track. They differ primarily in
that the state space for the minimization problem involves two vari-

ables and the pole-on-cart involves four variables.

Figure 4.2 is a state space plot for the control system shown in
Figure 4.1 after the ASE-ACE has begun to learn how to control the

system. The vertical axis of the plot is AI and the horizontal

axis is XI . If the ASE-ACE is controlling the system properly,
- the value of X should move to zero and stay near zero for the funct-

ion, X2 + 1, that was selected. In this case, the function is
never zero so there is no equilibrium point. The boxes shown in
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Figure 4.2 are the actual boxes used by the ASE-ACE and failure cor-

responds to the plot leaving the bounds of the plot region.

The state space plot shown in Figure 4.2 starts with an initial

value of XI equal to -3 and an initial value of AI equal to

0.01. The ASE-ACE has had several trials to learn prior to the trial

shown in Figure 4.2. Although the initial change in XI is away

from zero, XI does eventually move to zero, and no matter how far
it may get away from zero, it always moves back to zero. This trial

failed because A, exceeded the plot limits, but when it failed,

.I was near zero. Eventually, XI should move more rapidly to

zero and stay close to zero for a longer period of time.

4.2 SECOND APPROACH TO MINIMIZING A FUNCTION

Figure 4.3 is a block diagram of the second approach used to
minimize a function. In this case, the estimate of X that minimizes

F(X) is incremented by plus or minus &X where aX is a constant. The

. . state space of the ASE-ACE includes X, F(X), dF/dX and d F/dX

Failure is defined as dFldX being positive. Failure corresponds to

the value of the function increasing after any step. At the minimum

point, d2F/dX 2  should be zero. This second approach is more

straightforward than the first.

Figure 4.4 is a plot of the values of X as a function of time,

or step number, for trial 97. Note that the ASE-ACE has learned to

decrease X until it has reached the value of zero which is the cor-

rect minimum for the function F(X) = X The value of X was reset

to its initial value of 3 after each trial.
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5
APPLICATION OF ASE-ACE TO AUTOFOCUS

One potential application of the ASE-ACE learning algorithms to

synthetic aperture radar (SAR) that we would like to discuss in more

detail is the autofocus problem.

The objective of a SAR system is to produce a high resolution

image of some scene on the ground from an aircraft. A strong point

target in the scene will look like a bright spot in the image. The

width of the bright spot is a function of the basic resolution

capability of the SAR and the amount of quadratic phase error in the

system. One source of quadratic phase error is the motion compen-

sation system. Position measurement errors that are a quadratic

function of time cause quadratic phase errors.

Figure 5.1 illustrates the application of ASE-ACE to cancel the

quadratic motion measurment error. The upper portion of Figure 5.1

represents the motion measurement chain of the motion compensation

system, consisting of a motion sensor (inertial navigation unit)

followed by two integrators. The motion sensor measures the trans-

lational acceleration along the radar line-of-sight. The accelera-

tion measurement is integrated once to give a measure of line-of-

sight velocity and then a second time to give a measure of line-of-

sight position. Prior to starting the integration process, the in-

tegrators must be initialized to the best estimate of line-of-sight

velocity and line-of-sight position.

The quadratic motion measurement error is caused by any bias in

the acceleration measurement and any error in the velocity initial

condition. An error in velocity will cause position to grow lin-

early with time and an acceleration bias will cause position to grow

quadratically with time. The objective of the ASE-ACE is to keep

the velocity and position measurements within the expected bounds

over the aperture time of the radar. The ASE-ACE output is inte-

grated to give a bias correction to the acceleration measurement out

A
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of the motion sensor. If the bias integrator output equals the

motion measure bias and is opposite in sign, the velocity and posi-

tion integrators will stay within bounds.

There is an alternate approach that can be used to solve the

autofocus problem using the ASE-ACE. Instead of giving the ASE-ACE

the velocity and position motion measurements, the 3 dB and 15 dB

IPR widths can be measured in the image processor and used as inputs

-. to the ASE-ACE. The SAR aperture time window could be slid along in

tim and a sequence made on the same poin target. The ASE-ACE would

still drive the bias integrator in the motion measurement chain.

This would give better performance but would be more difficult to

implement.
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6
DEFINING AND CHANGING BOXES

A different approach to defining the boxes used by the ASE-CE

than implemented by Barto, et al. 1 has been implemented in this

ASE-ACE algorithms studied by ERIM. This approach can be best illu-

strated by defining the four vectors x., A., e. and - as shown below

using ji as an example

1 if cart-position is in X-region 1i

1 if cart-position is in X-region2
1 if cart-position is in X-region

The elements of ii take only the values 0 and 1 and each element

corresponds to one region. Only one element of s. can be 1 at any
given instant of time. A similar definition holds for , and i.

With these preliminary definitions out of the way, the following vec-

tor xl can be defined

Fxi

).. =

This vector x uniquely defines the state of the pole-on-a-cart to

within the resolution of the selected quantization levels (region

widths).

The vector ji used by Barto can be obtained from the vector xi by

multiplying x by a matrix A and selecting all the elements of the

resulting vector to be zero except for the element that exactly

equals 4. Each row of A has only 4 non-zero elements equal to 1 and

all the rows are independent. A typical A matrix would have the

form:

PEIOUS PAGE
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1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

1 0 0 1 0 0 0 0 0 1 0 0 0 1 0

A =
0 0 1 0 0 1 0 0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 1 0 0 1 0 0 1

The matrix A combined with the limiting process can be viewed as a
mapping from an m-dimensional space to an n-dimensional space where

n is greater than m.

Consider now the problem of changing the sizes of the boxes by

redefining the regions used for x, 9, o and & during the process of

running the ASE-ACE. It will be assumed that the change is always

towards smaller boxes (i.e., more boxes). After this change, it is

important to retain the information learned which is stored in the

' weighting vectors vi and w. To do this, the following vectors

are defined.

=r[At.] -i

v w

The matrix A A1 will always be invertible and AAi] At defines a

unique mapping of one vector into another vector.

At this point, it will be assumed that the change in box sizes is

accomplished by cutting each region of x, A, e, 4 in half, thirds,

fourths, etc. If they are cut in half, the vectors and can be

doubled in size as shown below:
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vi w
V, j-

1. --

ml

v wl

Vj.? (new) = V2 (new) 2

°Vm W'm

Vm Lm

The first element of v! becomes the first and second element of v!

(new) and the second element of v! becomes the third and fourth ele-

ment of v, (new), etc. In a similar manner, w. is redefined. Once

11-1I '-this is done, then the starting values for v i and w i correspond-

ing to the smaller boxes are:

_i (new) = A2v (new)

±wi (new) = A2w! (new)
..-

Where A1 is the value of the A-matrix for the original boxes and

A2 is the value of the A-matrix for the smaller boxes. This pro-

. cedure will not work if the box sizes are changed by arbitrarily re-

defining the regions.

The objective of changing the size of the boxes during a run is

to tighten up the control and keep the pole closer to zero. The

larger boxes would be used initially to achieve control of the pole
and keep it from exceeding the specified limits. The smaller boxes

would be used in conjunction with penalties within the boxes to keep

the pole as close to zero as possible and possibly to keep the cart

as close to zero position as posible.
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APPLICATION OF ASE-ACE TO A ROBOTICS TYPE OF PROBLEM

We will now describe a control problem which has some of the

characteristics of a robotics problem which is suited to the appli-

cation of an ASE-ACE type of controller. The problem is illustrated

N". in Figure 7.1 which shows a mass at the end of a rod which rotates

in a two-dimensional coordinate system. The length of the rod is

variable and the rod is flexible. The objective of the problem is

to move the mass M from one point in space to another point in space

with minimum bending of the rod. There is very little system damp-

ing, so once bending is excited, it continues making it impossible

to obtain the desired steady state conditions.

7.1 RIGID DYNAMICS

The controller for the system applies a fixed torque to rotate

the rod. The direction of the torque can change, but not the magni-

tude. The angular acceleration of the rod, a, is equal to:

=T

MrS'>.

where Xf and Yf are the desired final coordinatees of the mass.

It is assumed that the rod is extended before being torqued. The

force on the mass is F = Mrs', which can be rewritten as:

F = T/r

The force on the mass is directly proportional to the applied torque.

The X, Y-coordinates of the mass at any instant of time are:

X = r cos (e)

Y = R sin (e)

Therefore, X and Y are nonlinear functions of a.
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7.2 BENDING

It will be assumed that bending can be modeled as a resonant

. circuit. The bending, dz, is equal to:

dz(s)= F(s)
Sf + 2 6WbS + Wb

efin terms of Laplace transforms. The bending model is, therefore,

defined by the bending frequency, Wb, and the damping coefficient,

6. Once dz has been computed, the true values of X and Y become:

X = r cos (e) - dz sin (e)

Y = r sin (G) + dz cos (e)

Even if e and r are constants, dz will not be constant so X and Y

will not be constant.

7.3 STATE SPACE DEFINITION

For this example problem, it is recommended that the state space

consist of e, G, dz, and r. The variables e, e, and r are used since

they are the natural quantities expected to be used by the control

law. The variable dz is added since it will be used to determine

failure. Failure will be defined as dz exceeding positive or nega-

tive limits.

The sample time used will have to be a function of Wb so the

bending motion will be adequately sampled.

7.4 CONCLUDING REMARKS

The proposed example is a simple learning problem, but it is

typical of certain practical design problems such as the cargo boom

on the space shuttle. The rod in Figure 7.1 could be the cargo boom

and the mass could be a satellite. The example problem would then

* reflect the problem of placing a satellite into orbit without

4I7
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excessive residual motion. The same problem could also represent a
cargo boom on a ship unloading cargo. The problem, however, is sim-

ple enough so that it can be easily simulated and programmed into

the existing ASE-ACE computer coee.
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CONCLUSIONS AND RECOMMENDATIONS

It has been demonstrated that the ASE-ACE adaptive algorithm of

Barto can be used effectively in a learning mode to control a fairly

difficult mechanical system.

It was also shown that the ASE-ACE controller can be used to

minimize an arbitrary function. Since a large number of engineering

' problems can be viewed from the perspective of minimizing some per-

formance function, it follows that the ASE-ACE adaptive/learning

algorithm may find wide engineering application.

It is suggested that two specific applications be examined in

the continuing study: (a) the SAR autofocus problem, and (b) image-

matching, which is a more difficult problem as it involves two-

dimensional performance functions.

Study of the learning characteristics of the ASE-ACE should con-

tinue, however, in order to fully understand the subtleties of the

algorithm. Specifically, the effect of the size of the state space

on performance and the possibility of using some punishment when the

system approaches failure to improve performance should be

investigated.

"..



APPENDIX

The dynamic behavior of the cart-pole system is described by the

following non-linear differential equations which were used in our

simulation:

-F m.Ce2 sin G + V sign (

g sin o + cos mm -

L 2
4 m cos Qi

m mc + mJ
9 =

" F + mt[12 sin G- cos Gl - 1c sign (A)M x m

2where g = 9.8 m/sec2 , acceleration due to gravity,

mc = 1.0 Kg, mass of cart,

m = 0.1 Kg, mass of pole,

= 10 m, half pole length,
uc = 0.01, coefficient of friction of cart on track,

lp = 0.001, coefficient of friction of pole on cart, and

F = *10.0, newtons, force applied to carts center of mass at

time t.

The equations were solved by numerical approximation using Euler's

method with a time step equal to or less than the sampling period.
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